首页> 外文OA文献 >Consistent estimation of the filtering and marginal smoothing distributions in nonparametric hidden Markov models
【2h】

Consistent estimation of the filtering and marginal smoothing distributions in nonparametric hidden Markov models

机译:非参数隐马尔可夫模型中滤波和边际平滑分布的一致估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we consider the filtering and smoothing recursions in nonparametric finite state space hidden Markov models (HMMs) when the parameters of the model are unknown and replaced by estimators. We provide an explicit and time uniform control of the filtering and smoothing errors in total variation norm as a function of the parameter estimation errors. We prove that the risk for the filtering and smoothing errors may be uniformly upper bounded by the L1-risk of the estimators. It has been proved very recently that statistical inference for finite state space nonparametric HMMs is possible. We study how the recent spectral methods developed in the parametric setting may be extended to the nonparametric framework and we give explicit upper bounds for the L2-risk of the nonparametric spectral estimators. In the case where the observation space is compact, this provides explicit rates for the filtering and smoothing errors in total variation norm. The performance of the spectral method is assessed with simulated data for both the estimation of the (nonparametric) conditional distribution of the observations and the estimation of the marginal smoothing distributions.
机译:在本文中,当模型的参数未知且由估计量代替时,我们考虑了非参数有限状态空间隐马尔可夫模型(HMM)的滤波和平滑递归。我们根据参数估计误差对总变化范数中的滤波和平滑误差提供了明确且时间均匀的控制。我们证明了滤波和平滑误差的风险可能由估计量的L1风险统一上限。最近已经证明,有限状态空间非参数HMM的统计推断是可能的。我们研究了在参数设置中开发的最新光谱方法如何可以扩展到非参数框架,并为非参数光谱估计器的L2风险给出了明确的上限。在观察空间紧凑的情况下,这为总变化范数中的滤波和平滑误差提供了明确的比率。光谱方法的性能通过模拟数据进行评估,以评估观测值(非参数)的条件分布和评估边际平滑度分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号